Рекомендация
Студентам
Вы можете использовать данную статью как часть или основу своего реферата или даже дипломной работы или своего сайта
Просто перейдите по ссылке ниже, редактируйте статью, все картинки тоже доступны, все бесплатно
Редактировать статью?!
Скачать статью в формате PDF
Сохраните результат в MS Word Docx или PDF, делитесь с друзьями, спасибо :)
Категории статей
Биомеханика ортодонтического перемещения зубов
В процессе лечения возникает необходимость перемещать зубы в трех взаимно перпендикулярных направлениях. В связи с анатомическими особенностями зубочелюстной системы нужное давление и тягу можно оказывать в основном на коронку зуба. Его корень, который примерно в 2 раза длиннее коронки, находится в альвеоле. Под воздействием горизонтально направленной силы, приложенной к коронке зуба, происходит его наклон, а не поступательное (корпусное) перемещение.
Основываясь на третьем законе Ньютона, при конструировании ортодонтического аппарата следует определять направление и величину его действующей силы, обозначаемой как активная сила F, а также направление и величину противодействующей силы, обозначаемой как реактивная сила R
Известно, что любое сложное движение тела по плоскости представляет собой сумму двух простых движений: поступательного, возникающего при совпадении линий действия активной и реактивной сил, и вращательного, возникающего при несовпадении линий действия этих сил. Следует учитывать, что сила характеризуется тремя параметрами — величиной, линией действия и его направлением. Рассмотрим движение тела, вращающегося вокруг неподвижной оси или центра вращения, каким является, например, маховое колесо на неподвижном стержне. Поскольку центр вращения колеса О фиксирован, то при действии активной силы F колесо будет вращаться. Для определения направления вращения колеса из его центра опускают перпендикуляр L на продолжение линии действия активной силы F. Маховое колесо вращается по часовой стрелке -М (см. рис. Ю.2, в) или против нее +М (см. рис. 10.2, а). При совпадении линий действия активной силы F и реактивной R и их прохождений через центр махового колеса оно вращаться не будет (см. рис. 10.2, б). Вращение колеса произойдет, если активная сила F, линия действия которой не прходит через центр вращения колеса О, вызовет появление пары сил. Эта пара состоит из активной силы F и реактивной R, возникающих в центре вращения колеса О; последняя всегда параллельна силе F, равна ей по величине и направлена в противоположную сторону.
Суммарная величина вращающего момента (М), возникающего при данной паре сил, может быть вычислена по формуле:
"РИ равнозначной ей формуле M=F-L, так как F = R. Из
следней формулы видно, что величина вращающего момента ^ прямо пропорциональна величине активной силы F и длине
рпендикуляра L. Следовательно, чем дальше проходит линия, тем больше вращающий момент для той же величины силы F.
А. М. Schwarz (1929) сравнил движение зуба в альвеоле с движением твердого тела в вязкой среде. Опираясь на законы механики и поведение твердого тела в упругой среде (закон Гусса), он математически определил центр вращения перемещаемого зуба с учетом длины его корня, а также удаленности точки приложения одной горизонтальной силы от шейки зуба. По данным А. М. Schwarz, центр вращения перемещаемого зуба расположен между верхушечной и средней третями корня; иногда он может смещаться в сторону середины корня, но не достигает ее. .
На местоположение центра вращения перемещаемого однокорневого зуба влияет форма его корня [КамышеваЛ. И., 1969;
Schwarz А. М., 1928, 1929; MarkorzA., 1962].
Рассмотрим механизм воздействия активной силы на жесткое клиновидное тело, частично погруженное в густую вязкую среду, с нефиксированным центром вращения. Примером может служить кол, вбитый в землю.
Возможные варианты воздействия активной силы F на такой кол:
а) только вправо, вращение по часовой стрелке;
б) вправо и вниз, вращение по часовой стрелке;
в) вправо и вниз, без вращения;
г) влево и вниз, вращение против часовой стрелки;
д) вправо и вверх, вращение по часовой стрелке. Результат перемещения кола зависит от направления действующей силы, точки ее приложения, положения центра вращения кола в почве и противодействующих сил среды, в которой находится кол. В случаях, иллюстрируемых рисунком, действующая сила направлена вправо, но под разными углами. В связи с этим появляется компонент силы, направленный вниз, который стремится погрузить кол в землю (см. рис. 10.3, б. в) или направленный вверх и стремящийся вытянуть кол из земли (см. рис. 10.3, д). Компонент, направленный по вертикали, отсутствует (см. рис. 10.3, а). Согласно принципу вращения махового колеса, кол будет вращаться по часовой стрелке (см. рис. 10.3, а, б, д), против нее (см. рис. 10.3, г) или вращения не будет (см. рис. 10.3, в). Если можно было бы приложить силу в горизонтальном направлении через центр вращения, то кол переместился бы поступательно (см. рис. 10.3, е).
Корень зуба, расположенный в альвеоле, можно сравнить с колом, вбитым в землю. Подобно такому колу, под действием приложенной силы зуб может совершать поступательное и вращательное движения.
На рис. 10.4 схематично представлено действие в дистальном направлении активной силы F на первый постоянный моляр. Центр вращения зуба обычно находится на границе между средней и апикальной третью корня.
В зависимости от его расположения и направления активной силы F возможны следующие варианты перемещения моляра:
а) сила F направлена перпендикулярно вертикальной оси зуба, линия ее действия проходит ниже центра его вращения; результат — дистальное перемещение зуба с его дистальным наклоном;
6) сила F направлена дистально и вверх, линия ее действия проходит ниже центра вращения зуба, результат — дистальное перемещение зуба с дистальным наклоном его коронки и зубоальвеолярным укорочением;
в) сила F направлена дистально и вверх, линия ее действия проходит через центр вращения зуба, результат — дистальное перемещение зуба с зубоальвеолярным укорочением, но без наклона;
г) сила F направлена дистально и вверх, линия ее действия проходит выше центра вращения зуба, результат — ди-стальный наклон корней зуба с мезиальным наклоном его коронки и зубоальвеолярным укорочением;
Д) сила F направлена дистально и вниз, линия ее действия проходит ниже центра вращения зуба, результат — диО— центр вращения зуба; F — активная (действующая) сила; R — реактивная (противодействующая) сила; L — длина перпендикуляра, опущенного из центра вращения зуба на линию дейстия силы F; M — момент вращения (прямыми стрелками обозначено направление силы, вызывающей поступательное перемещение зуба, дугообразными — вращательное). Направлению воздействия по часовой стрелке соответствует дистальный наклон зуба, против часовой стрелки — мезиальный.
стальное перемещение зуба с дистальным наклоном его коронки и зубоальвеолярным удлинением;
е) сила F направлена дистально и перпендикулярно вертикальной оси зуба, линия ее действия проходит на уровне центра вращения; результат — поступательное перемещение зуба.
Анализируя представленные на схеме варианты силового воздействия на зуб, можно констатировать, что в зависимости от направления линии действия активной силы F и ее отношения к центру вращения зуба он может перемещаться в дистальном направлении с дистальным или мезиальным наклоном коронки, поступательно; одновременно может происходить зубоальвеолярное удлинение или укорочение. Для достижения поступательного (корпусного) перемещения зуба c помощью одной силы необходимо исключить вращательный момент путем максимального смещения центра вращения зуба
за его пределы. При показаниях к перемещению корня зуба без значительного смещения его коронки силу нужно приложить в области середины корня. Для предупреждения наклона перемещаемого зуба сочетают прямолинейное воздействие на него с воздействием обратной пары сил, т. е. с вращательным воздействием. Поступательного перемещения зуба достигают при оптимальном соотношении между названными силовыми воздействиями.
Источник: stomfak.ru